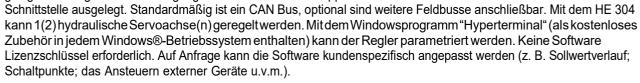


SCHNEIDER SERVOHYDRAULIK


Digitaler Achscontroller Typ HE 304

Verwendungszweck

Der digitale Achscontroller HE 304 ist ein μ C-basierender Regler mit analogen und digitalen Ein- und Ausgängen im Europakartenformat. Er kann für alle elektrohydraulischen Achsen und schnelle Regelkreise in der Industrie und in der Prüf- und Fertigungstechnik eingesetzt werden. Einsatzmöglichkeiten sind als

- Elektrohydraulische Achse
- Lageregelung
- Gleichlaufregelung
- Kraft/Druckregelung
- Kraftregelung mit unterlagerter Wegregelung/Begrenzung
- Wegregelung mit unterlagerter Kraftregelung/Begrenzung

Ein analoger Ausgang ist direkt für die Ansteuerung von Servoventilen geeignet. Ein digitaler Sensoreingang ist als SSI bzw. Start/Stopp-

Die 19-Zoll Grundplatine trägt die Systemplatine, LEDs zum Signalisieren der Ein-und Ausgänge, Messpunkte und spezielle Zubehörschaltungen. Als Typ HE 303 ist er im Klemmenkastengehäuse für den Feldeinsatz oder auch als Schaltschrankmodul ebenfalls lieferbar.

Blockschaltbild HE 304 (GND) analog in GNDar reference za PWM feedback z10 2 valve Profibus RS232 z18 j current Submodul J6 250R 💠 B15 z12 4 D GND z32 Analog GNDa controller A-out1 🐈 z16 out b2 CAN-L 54 CAN-H 120R b2 CAN-L CAN CPU J30 B13 d14 CAN-GND 2 hit HE 304 b18 b20 -Clk nonitor cur. out Controller Start-Stop +Data Input selec -Data J18 8 J2 +V (+12V) NV-RAM RAM -V (-12V) D-In1 A16 B16 D-out release d26 Digital #A10 Digital #A11 <u></u> **8 1 1** +15V -15V 本人 **∦**A12 F24 V z30 b32 z32 supply voltage +24 V GND

Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten!

Seite 1 von 6

Technische Daten

Versorgung

Versorgungsspannung unipolar : 24V DC (±15%) ca. 500mA

Eingänge

Digital

1) Digitaleingänge Din 1 - 4 : 24 Volt optoentkoppelt

Eingangsstrom = 10 mA

1-Signal Ue > 12 V 0-Signal Ue < 5 V

2) SSI, SST (Start/Stop) Eingang für Wegsensoren

:SenderImax=±60mA

Empfänger Empfindlichkeit ± 200mV

3) CAN-Bus-Eingang

 $: U_{CAN} = -5 ... + 18V$

: U_{diff}=1,5...3V, kurzschlussfest

max Baud-Rate: 500kBaud

Abschlusswiderstand 120 Ohm; steckbar mit J3

4) Profibus-Slave Eingang : Optional über Zusatzplatine

Nach Profibus-DP EN 50170 (DIN 19245)

5) Programmierschnittstelle : RS 232 über Modemkabel 9pol D-SUB

:Ausgangsspannung =±8V/±22mA

: Eingangsspannung low/high = 1,3 / 1,8V

<u>Analog</u>

6) Analogeingang 1-4 : 12 bit Auflösung

Spannungsbereiche 0...+5V; 0...+ 10V; ±5V; ±10V wahlweise R_{in} 30 kohm

Strombereiche (mit J4...J7) 0 / 4 – 20mA konfigurierbar

R_{in} 250 Ohm

Ausgänge

Digital

1) Digitalausgänge Dout 1-4 : 24 Volt / 500 mA,

kurzschlussfest gegen 24V und GND; potentialgebunden

Analog

2) Analoge Spannung Aout1 / 2 : 0..±10 Volt, 12 bit Auflösung

I_{max} 5 mA; kurzschlussfest

3) Monitorausgang 0 / 4 – 20 mA (Option) an Pin b28

 $U_{max}20V$

4) PWM Stromausgang : PWM Strom-Ausgangsstufe mit separatem Dither

mögliche Nennströme : 0 ... ±200 / ±300 / ±650 / ±1000mA

kurzschlussfest gegen 24V und GND, 12bit Auflösung

5) Linearausgang für Flapperventil Kleinsignalausgang (Option) an Pin b6

: 0..±40 mA gegen GND

 $U_{max} \pm 12 V$

Controller

Microcontroller 16 bit : Siemens C167 mit 20 MHz

Reglerabtastzeit : 1 msec mit Watchdogüberwachung

Regelparametrierung : über RS232

Datensicherheit : Flash EPROM 256 x 16 NVRAM 2 x 32k x 8

Mechanische Daten

Abmessungen: Europakarte 100 x 160 mm

Frontplatte 50 mm (10 TE) 3HE

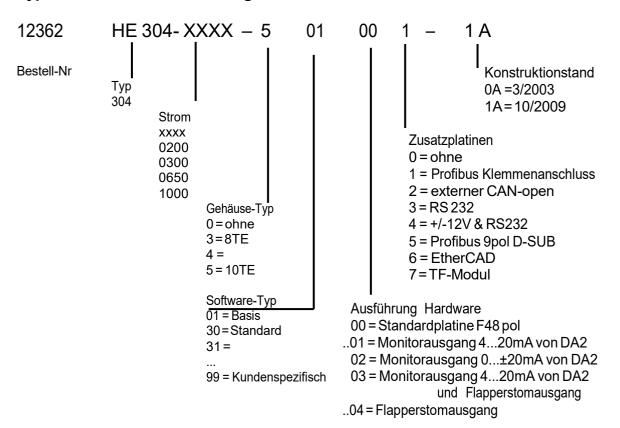
Steckverbinder: DIN41612 F 48 polig

Gewicht 500 g

Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten!

Seite 2 von 6

Umgebungsbedingungen


Zulässige Umgebungstemperatur :-10°C ...+65°C
Zulässige Lagertemperatur :-40 ... +85 °C

Zulässige Lagertemperatur :-40 ... +85 °C
Zulässige Luftfeuchte :30 ... 75 % nicht betauend

Vibration : < 2g sinusförmig 10 ... 100Hz
Elektromagnetische Verträglichkeit : Schärfegrad 3 gem. EN 50082-2
(nur wenn die Platine in ein EMV geschütztes Kartenmagazin eingebaut ist)

Schutzart :IP 20

Typenschlüssel und Bestellangaben

Ausgeführte Beispiele

Bestell-Nr	Тур	Beschreibung
12362	HE 304-xxxx-5-30-00-0-1A	Standard
11476	HE 304-0000-5-01-00-0-1A	2-fach Bypass-Druck-Regler
14099	HE 304-0000-5-03-00-0-1A	Druck-Regler mit CAN
40067	HE 303-xxxx-3-05-01-0-0A	Positionsregler mit 8 TE Frontplatte
1017031	HE 304-xxxx-5-14-00-6-1A	EtherCAD Kraftregler
1054527	HE 304-xxxx-3-17-03-0-1A	Positionsregler mit Monitor-/ Flapperstomausgang
1058961	HE 304-xxxx-5-17-03-5-1A	Profibusregler mit Monitor-/ Flapperstromausgang

Zubehör

37946	KE DIN41612-F48	Federleiste mit Lötösen für Rackeinbau
18499	KE DIN 41612-F48pol WW	Federleiste mit WW-Anschlusspfosten 1x1 mm für Rackeinbau
37747	KE SKBI 64/F48	Steckrahmen mit Schraubklemmen
1065101	HE 236-PS-1AC-24DC-0.75FL	Netzteil 18W 24V DC 0,75A Hutschienenmontage

Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten!

Seite 3 von 6

Anschlussbelegung

An der Federleiste DIN 41612 F48polig:

Spannung	sversor	gnur

z30 +24V b32, z32 **GND**

CAN Bus

CAN-L b2 b4 CAN-H d14 **CAN-GND**

SSI oder SST Sensoreingang:

Rx+; Data+; Start-Stop b30 b26 Rx-; Data-; /Start-Stop b18 Tx+; Clk+; Init Tx-; Clk-; /Init b20 +24V Versorgung Geber z30

z32 **GND** Geber

Analoge	Eingänge	
z8	Kanal 1	

z10 Kanal 2 **B14** d10 Kanal 3 A15 z12 Kanal 4 **B15** analog GND A16/B16 z32

Testpunkt A14

Analoge Ausgänge Testpunkt

z16 Analog out 1 A13 d16 Analog out 2 **B13** d18 Servo + (PWM Stromausgang)

Servo -: z18

b28 Monitorausgang4-20mA

Flapperventilstromausgang 0...±40mA b6 Flapperventilstromausgang Masse b32

RS232

Digitale Eingänge

d26 Eingang 1 z26 Eingang 2 Eingang 3 d24 z24 Eingang 4

d32 GND (potentialgetrennt)

Digitale Ausgänge

z6	Ausgang 1
b8	Ausgang 2
b10	Ausgang 3
b12	Ausgang 4

Progammschnittstelle RS232

F48 pol	9pol D-Sub	Funktion
b22	2	Tx
b24	3	Rx
b32	5	GND

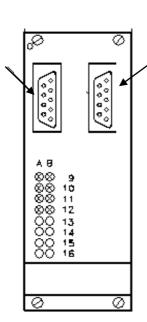
Profibus-Slave Schnittstelle

Seitlich an der Platine oder an der Frontplatte

X11 9pol D-Sub **Funktion** Pin3 Pin8 A-line Pin4 Pin3 B-line

Progammschnittstelle RS422

F48 pol	Funktion
z2 .	Tx+
z4	Tx-
d4	Rx+
d6	Rx-
b32	GND
(wird normalerweise nicht benötigt)	


Frontansicht

Linke Reihe A LED-Anzeige A 9 Digital in 1 A10 Digital in 2 A11 Digital in 3 A12 Digital in 4

> Testpunkte A13 Analog out 1

A14 Analog in 1 A15 Analog in 3

A16 Analog GND

Profibus an der Frontseite

Option

Rechte Reihe B

LED-Anzeige B 9 Digital out 1

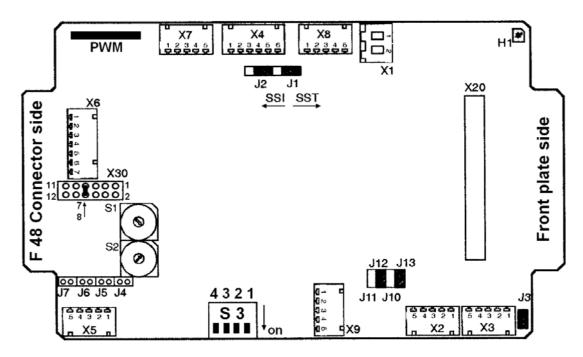
B10 Digital out 2

B11 Digital out 3 B12 Digital out 4

Testpunkte

B13 Analog out 2

B14 Analog in 2 B15 Analog in 4


B16 Analog GND

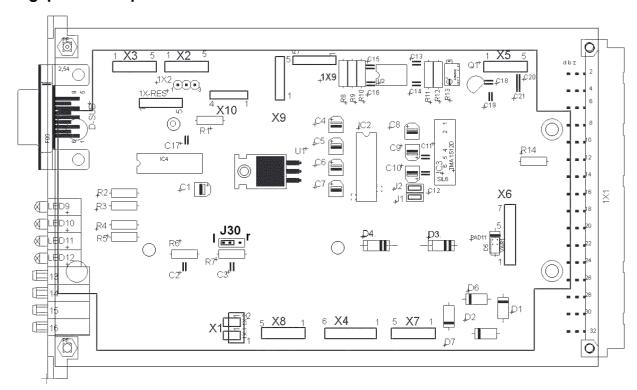
Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten!

Seite 4 von 6

Lageplan Reglerplatine

Schalter und Jumpereinstellungen

Schaller und Jumperemstenungen		
S1/S2	CAN Adresse S1 CAN (x1; Einer) S2 CA	AN (x10; Zehner)
\$3.1-4 \$3.1 \$3.2 \$3.3/4	0 = Run 0 = Run Off / Off = 125 KB	Download/Baudrate (unten, mitte) 1 = Reset 1 = Download Modus On / Off = 250 KB On / On = 1000 KB
J1J2		Veggeber mit Start-Stopp Interface
J3	CAN Abschlusswiderstand	eggeber mit SSI Interface (unten ganz rechts) = mit 120 Ohm abgeschlossen
J4J7 J10J11 J12J13	J5 out = Spannung in J6 out = Spannung in J7 out = Spannung in Diagnoseschnittstelle (unter	= Stromeingang für Eingang 1 = Stromeingang für Eingang 2 = Stromeingang für Eingang 3 = Stromeingang für Eingang 4 n rechts) Duplex in = Half Duplex
X30	J12 und J13 out = offen Jumperfeld	in = mit 120 Ohm abgeschlossen
	7 - 8 Verbindung DA1 zu PV Alle anderen müssen offen b	
LED H1	(oben rechts) aus = keine Spannung	blinkt mit ca. 1 Hz = Run (download)


Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten!

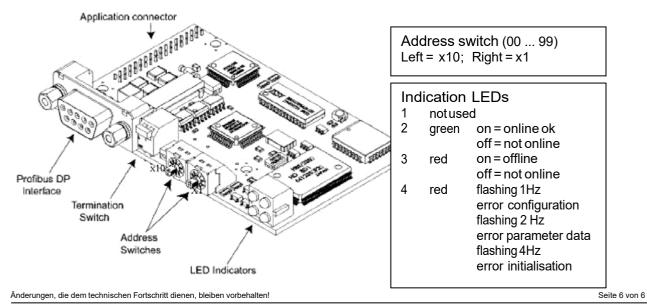
Seite 5 von 6

an = Stop

Lageplan Grundplatine

Jumpereinstellungen

J30 Signalauswahl für 4-20mA Monitorausgang IC4


links gesteckt = A_{out1} ist die Quelle für IC4 (Testpunkt A13)

nicht gesteckt = kein Signal

rechts gesteckt = A_{out2} ist Quelle für IC4 (Testpunkt B13)

Lageplan Profibusplatine (Option)

Anschlussstecker als D-SUB an der Frontplatte oder als Klemme möglich A-line = Pin 3 B-line = Pin 4 shield = Pin 5 Mit Schalter für Busabschlusswiderstand und Adressschaltern

Schneider Servohydraulics GmbH Südstraße 4 | D-32457 Porta Westfalica