

Elektrohydraulisches Servoventil Typ HVM 250

Besondere Kennzeichen:

- kein Weggeber erforderlich
- hohe Betriebssicherheit
- einfacher Service
- robuste Ausführung
- hohe Dynamik
- relativ schmutzunempfindlich
- nur variable Drosseln
- $Q \max = 4001/\min \text{ bei } \Delta p = 70 \text{bar}$
- $p_N = 315 \text{ bar}$

Vorsteuerung

Bauart

elektrische Eingangsstufe, symmetrischer

Linear-Motor, Folgekolbensystem

Druckteilerstufe

Hauptsteuerung

Allgemeine Kenngrößen:

vorgesteuerter Längsschieber,

Vierwegeausführung Plattenaufbau NG 25 / Cetop 08

Befestigungsart Einbaulage Gewicht

beliebig 15kg

1. Hydraulische Kenngrößen (Definition nach DIN 24311)

.1	Nenndruck	рм	=	315	[bar]
.2	Betriebsdruck	pь min	= =	5 315	[bar]
.2.1	Rücklaufdruck	pb max pr max	=	315 35%рь	[bar]
.2.2	Druck in Y	pY max	=	10	[bar]
.3	Höchstdruck (statischer Prüfdruck)	p _{max}	=	450	[bar]
.4	Nenndurchfluß bei $\Delta p = 70$ bar	Qn	=	250/400	[l/min]
.5	Nulldurchfluß, max bei pn	Q01+02	<	5% Qn	[l/min]
.6	innerer Leckverlust, max (Lecköl) bei pn = 210 bar	QL	<	100	[cm³/min]
.7	Hysterese	Н	<	3% i _N 2% i _N	(ohne Dither) (mit Dither)
.8	Ansprechempfindlichkeit	Е	<	0,2% i _N 0,1% i _N	(ohne Dither) (mit Dither)
.9	Umkehrspanne	S	< <	1,5% i _N 1% i _N	(ohne Dither) (mit Dither)
					(init Dither)
.10	Linearitätsabweichung		<	2% i _N	
.11	Sprungantwort 10% - 90%		<	4ms	
.12	Durchflußsymmetrie -Q $_{N}$ zu +Q $_{N}$		<	-10+20%i _N	
.13	Druckverstärkung (siehe Diagramm)	V_P	>	0,2 Pb / 1% i _N	T.
.14	Überdeckung, Standard	h	=	-1+3% i _N	
.15	Betriebstemperaturbereich	δм	=	253353	[K]
.15.1	Temperaturdrift		\leq	$1\%i_{\rm N}$ / $50K$	
.16	Viskositätsbereich des Betriebsmediums	γmin	=		n ² /s Richtwerte VG 10ISO VG 46
.17	Filterung des Betriebsmediums		<	Klasse 4-5 Klasse 15/14/	nach NAS 1638 oder nach ISO 4406
.18	Betriebsmedium Standard		=	HLP-Hydraul	iköle nach DIN 51524 Teil 2

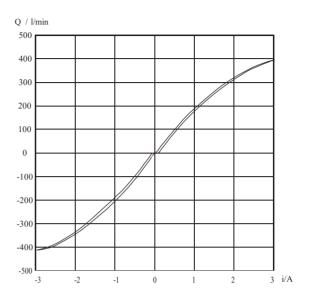
(Sonderausführungen möglich)

HVM 250_{Blatt 2/4}

2. Kennlinien HVM 250

Durchfluß-Signalfunktion

 $\Delta p = 70bar$


Sprungantwort

bei 210bar

--- Sollwert 5V/Div.

--- Schieberhub 1V/Div.

--- Strom 2V/Div.

Time = 5 ms/Div. Anstiegszeit für Hub10%-90% = 3,76 ms

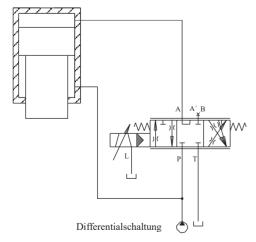
HVM 250_{Blatt 3/4}

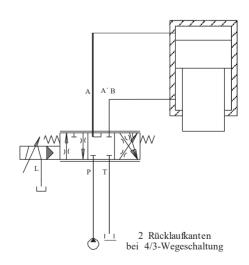


3. Elektrische Kenngrößen

3.1.1 Elektrische Daten ohne Elektronik

Sensorstecker M8

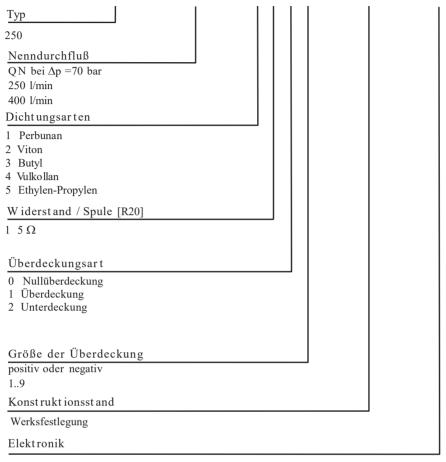

3.2 Elektrische Daten mit Elektronik



Stecker 7 pol. DIN 43563

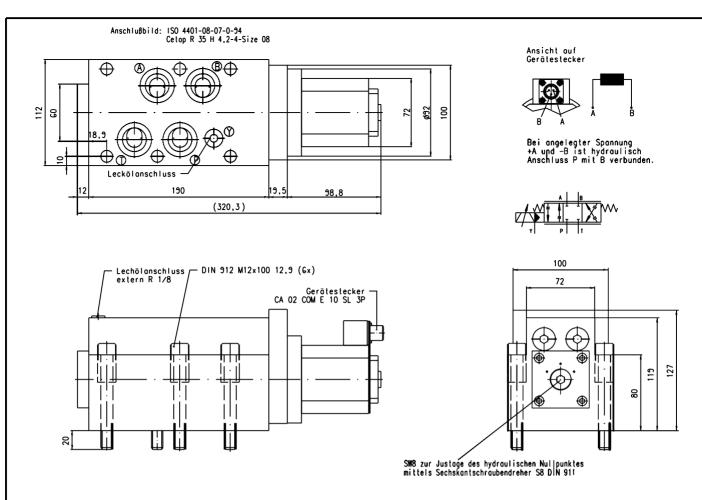
24VDC(1828V) — A 0V — B Spare — C Signal + — D Signal - — E Testoutput — F PE — G Input E1 E2 E3 E4 E5 Flow PE — G V 12 mA 20 mA +10 mA +20 mA P>A OV 12 mA 12 mA 0 mA 0 mA 0 -10V 20 mA 4 mA -10 mA -20 mA P>B								
+10V 4 mA 20 mA +10 mA +20 mA P>A O W 12 mA 12 mA 0 mA 0 mA 0	OV — B Spare — C Signal + — D Signal - — E Testoutput — F							
+10V 4 mA 20 mA +10 mA +20 mA P>A O W 12 mA 12 mA 0 mA 0 mA 0	Innut El El El				E4	E5	Flow	
H	три	EI	E2	E3	E/ 1	ES	FIOW	
Image: Second control of the properties of)>E	+10V	4 mA	20 mA	+10 mA	+20 mA	P>A	
-10V 20 mA 4 mA -10 mA -20 mA P>B	ignal I	0 V	12 mA	12 mA	0 mA	0 mA	0	
	S	-10V	20 mA	4 mA	-10 mA	-20 mA	P>B	

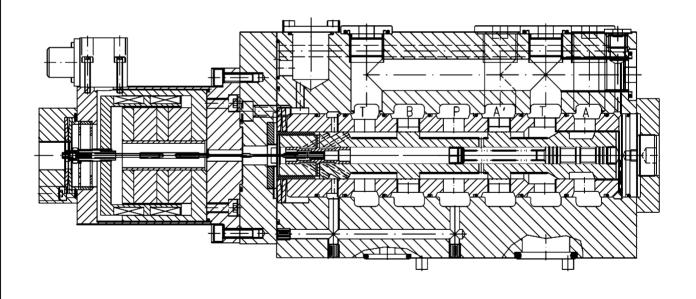
Applikationsbeispiele:



Bestellangaben

HVM 250 - 400 - 1200 - XX - E1


- E1 Spannungseingang ±10V
- E2 Stromeingang 4...20mA P nach A E3 Stromeingang 4...20mA P nach B
- E4 Stromeingang ±10mA P nach A
- E5 Stromeingang ±20mA P nach A


5.Zubehör:

Bezeichnung			BestNr
Kabeldose, gerade	3pol. mit 2m Kabel	KE 79-3406-52-03	10249
Kabeldose,W inkel	3pol. mit 2m Kabel	KE 79-3408-52-03	10250
Kabeldose	7po l.	KE CA 06 CO M 14S 7S	21855
Box-Verstärker		BOE XXX-25-0-5-1A	36738

Wichtige Hinweise:

Die Montagefläche für das Ventil sollte eine Ebenheit von 0,02mm und eine max. Rauhtiefe von 5µm aufweisen. Die hydraulische Nullpunkt-Einstellung erfolgt mittels Sechskantschraubendreher S8 DIN 911. Der maximal zulässige Druck in der Tankleitung ist 10 bar. Ventile für andere Betriebsmedien (z.B.Phosphat-Ester, Bremsflüssigkeit, Skydrol, Mil-Öle) sind auf Anfrage lieferbar. Ventile mit geknickter Kennlinie sind lieferbar. Änderungen, die dem technischen Fortschritt dienen, bleiben vorbehalten.

Angoben ohne Einheiten in mm All dimensions without unit in mm

KREUZNACH

Nur zur Information / Only for information

Anderungsindex / Amendment index			Ventil Valve	ld Nr.
	Datum Date	Name Name	HVM 250-400-1200-0A	
dwg.	07_12_04 Mer.		•	
			Jos. Schneider Optische Werke GmbH Ringstr. 132 55543 Bad Kreuznach	
Schneider			Germany	